mirror of
https://github.com/coder/coder.git
synced 2025-07-12 00:14:10 +00:00
Modify the RSA key generation algorithm to check that GCD(e, p-1) = 1 and GCD(e, q-1) = 1 when selecting prime numbers, ensuring that e and φ(n) are coprime. This prevents ModInverse from returning nil, which would cause private key generation to fail and result in a panic when `Precompute` is called. Change-Id: I0a453e1e1f8c638e40e7a4b87a6d0d7299e1cb5d Signed-off-by: Thomas Kosiewski <tk@coder.com>
88 lines
2.2 KiB
Go
88 lines
2.2 KiB
Go
package agentrsa
|
|
|
|
import (
|
|
"crypto/rsa"
|
|
"math/big"
|
|
"math/rand"
|
|
)
|
|
|
|
// GenerateDeterministicKey generates an RSA private key deterministically based on the provided seed.
|
|
// This function uses a deterministic random source to generate the primes p and q, ensuring that the
|
|
// same seed will always produce the same private key. The generated key is 2048 bits in size.
|
|
//
|
|
// Reference: https://pkg.go.dev/crypto/rsa#GenerateKey
|
|
func GenerateDeterministicKey(seed int64) *rsa.PrivateKey {
|
|
// Since the standard lib purposefully does not generate
|
|
// deterministic rsa keys, we need to do it ourselves.
|
|
|
|
// Create deterministic random source
|
|
// nolint: gosec
|
|
deterministicRand := rand.New(rand.NewSource(seed))
|
|
|
|
// Use fixed values for p and q based on the seed
|
|
p := big.NewInt(0)
|
|
q := big.NewInt(0)
|
|
e := big.NewInt(65537) // Standard RSA public exponent
|
|
|
|
for {
|
|
// Generate deterministic primes using the seeded random
|
|
// Each prime should be ~1024 bits to get a 2048-bit key
|
|
for {
|
|
p.SetBit(p, 1024, 1) // Ensure it's large enough
|
|
for i := range 1024 {
|
|
if deterministicRand.Int63()%2 == 1 {
|
|
p.SetBit(p, i, 1)
|
|
} else {
|
|
p.SetBit(p, i, 0)
|
|
}
|
|
}
|
|
p1 := new(big.Int).Sub(p, big.NewInt(1))
|
|
if p.ProbablyPrime(20) && new(big.Int).GCD(nil, nil, e, p1).Cmp(big.NewInt(1)) == 0 {
|
|
break
|
|
}
|
|
}
|
|
|
|
for {
|
|
q.SetBit(q, 1024, 1) // Ensure it's large enough
|
|
for i := range 1024 {
|
|
if deterministicRand.Int63()%2 == 1 {
|
|
q.SetBit(q, i, 1)
|
|
} else {
|
|
q.SetBit(q, i, 0)
|
|
}
|
|
}
|
|
q1 := new(big.Int).Sub(q, big.NewInt(1))
|
|
if q.ProbablyPrime(20) && p.Cmp(q) != 0 && new(big.Int).GCD(nil, nil, e, q1).Cmp(big.NewInt(1)) == 0 {
|
|
break
|
|
}
|
|
}
|
|
|
|
// Calculate phi = (p-1) * (q-1)
|
|
p1 := new(big.Int).Sub(p, big.NewInt(1))
|
|
q1 := new(big.Int).Sub(q, big.NewInt(1))
|
|
phi := new(big.Int).Mul(p1, q1)
|
|
|
|
// Calculate private exponent d
|
|
d := new(big.Int).ModInverse(e, phi)
|
|
if d != nil {
|
|
// Calculate n = p * q
|
|
n := new(big.Int).Mul(p, q)
|
|
|
|
// Create the private key
|
|
privateKey := &rsa.PrivateKey{
|
|
PublicKey: rsa.PublicKey{
|
|
N: n,
|
|
E: int(e.Int64()),
|
|
},
|
|
D: d,
|
|
Primes: []*big.Int{p, q},
|
|
}
|
|
|
|
// Compute precomputed values
|
|
privateKey.Precompute()
|
|
|
|
return privateKey
|
|
}
|
|
}
|
|
}
|